Aceleração do Processo de Compostagem

Uma revisão

Palavras-chave: Compostagem, Aceleração da compostagem, Biocarvão, Inoculantes, Celulase

Resumo

A compostagem é uma das formas mais viáveis para o tratamento de resíduos orgânicos. Porém seu inconveniente é o tempo, a demora que o processo convencional leva. Desta forma tem-se buscado maneiras de acelerar o processo de compostagem. Existem processos que empregam aeração, aquecimento e agitação mecânica. Tais procedimentos tem se revelado eficientes, porém necessitam de aparatos extras, o que encarece o processo. Devido aos maiores custos envolvidos em tais procedimentos, os mesmos não serão levados em consideração neste estudo, visto que uma das maiores vantagens da compostagem é justamente o seu baixo custo. São vários os procedimentos possíveis de acelerar o processo de compostagem. Tais procedimentos podem ser divididos em: pré-tratamento, adição de co-substratos e mudanças no processo. A utilização de biocarvão e de inóculos microbianos têm sido bastante eficientes na aceleração do processo de compostagem. A celulase, apesar de ter sido citada como uma substância bastante viável para acelerar o processo, ainda não foi utilizada em muitos estudos com esta finalidade.

Downloads

Não há dados estatísticos.

Biografia do Autor

Rolan Roney Ressetti, UEPG -Universidade Estadual de Ponta Grossa. Ponta Grossa, PR. Brasil.

DOUTORANDO EM QUÍMICA APLICADA pela UEPG, MESTRE EM QUÍMICA APLICADA pela UEPG, Linha de Pesquisa Espectroscopia Molecular Aplicada (2012), Especialização em METODOLOGIA DO ENSINO pelo IBPEX / UNIBEM (1997), Graduado em Licenciatura e Bacharelado em QUÍMICA pela PUC-PR (1982). Autor de dois livros didáticos (Química e Física) e outras publicações, inclusive um artigo com classificação A1 (QUALIS/CAPES). Atuou como Professor Colaborador na disciplina de Estágio Curricular Supervisionado, no curso de Licenciatura em Química, da UEPG. Professor do Ensino Médio, tendo exercido as funções de Coordenador e Supervisor de Ensino. Temas: Ensino de Química, Espectroscopia, Química Analítica, Química Ambiental, Biodecomposição, Ciências, História da Química, História da Ciência, Divulgação Científica, etc.

Referências

Abdel-Rahman, M. A.; Nour El-Din, M.; Refaat, B. M.; Abdel-Shakour, E. H.; Ewais, E. El-D.; Alrefaey, H. M. A. 2016. Biotechnological Application of Thermotolerant Cellulose-Decomposing Bacteria in Composting of Rice Straw. Annals of Agricultural Sciences, 61: 135-143. Doi: https://doi.org/10.1016/j.aoas.2015.11.006

Agyarko-Mintah, E.; Cowie, A.; Van Zwieten, L.; Singh, B. P.; Smillie, R.; Harden, S.; Fornasier, F. 2017. Biochar lowers ammonia emission and improves nitrogen retention in poultry litter composting. Waste Management, 61: 129-137. Doi: https://doi.org/10.1016/j.wasman.2016.12.009

Akdeniz, N. 2019. A systematic review of biochar use in animal waste composting. Waste Management, 88: 291-300. Doi: https://doi.org/10.1016/j.wasman.2019.03.054

Akintola, A.; Oyedeji, O.; Adewale, I.; Bakare, M. 2019. Production and physicochemical properties of thermostable, crude cellulase from Enterobacter cloacae ip8 isolated from plant leaf litters of Lagerstroemia indica linn. The Journal of Microbiology, Biotechnology and Food Sciences, 8: 989-994. Doi: https://doi.org/10.15414/jmbfs.2019.8.4.989-994

Albrecht, R.; Le Petit, J.; Terrom, G.; Périssol, C. 2011. Comparison between UV spectroscopic and nirs to asses humification process during sewage slugde and green wastes co-composting. Bioresource Technology, 102: 4495-4500. Doi: https://doi.org/10.1016/j.biortech.2010.12.053

Awasthi, M. K.; Pandey, A. K.; Bundela, P. S.; Khan, J. 2015. Co-composting of organic fraction of municipal solid waste mixed with different bulking waste: Characterization of physicochemical parameters and microbial enzymatic dynamics. Bioresource Technology, 182: 200-207. Doi: https://doi.org/10.1016/j.biortech.2015.01.104

Awasthi, M. K.; Wang, Q.; Chen, H.; Awasthi, S. K.; Wang, M.; Ren, X.; Zhao, J.; Zhang, Z. 2018a. Beneficial effect of mixture of additives amendment on enzymatic activities, organic matter degradation and humification during biosolids co-composting. Bioresource Technology, 247: 138-146. Doi: https://doi.org/10.1016/j.biortech.2017.09.061

Awasthi, S. K.; Wong, J. W. C.; Li, J.; Wang, Q.; Zhang, Z.; Kumar, S.; Awasthi, M. K. 2018b. Evaluation of microbial dynamics during post-consumption food waste composting. Bioresource Technology, 251: 181-188. Doi: https://doi.org/10.1016/j.biortech.2017.12.040

Barrena, R.; Pagans, E.; Faltys, G.; Sánchez, A. 2006. Effect of inoculation dosing on the composting of source‐selected organic fraction of municipal solid wastes. Journal of Chemical Technology & Biotechnology, 81: 420-425. Doi: https://doi.org/10.1002/jctb.1418

Bernal, M. P.; Alburquerque, J. A.; Moral, R. 2009. Composting of animal manures and chemical criteria for compost maturity assessment. A review. Bioresource Technology, 100: 5444-5453. Doi: https://doi.org/10.1016/j.biortech.2008.11.027

Briški, F.; Kopčic, N.; Cosic, I.; Kučic, D.; Vukovic, M. 2012. Biodegradation of tobacco waste by composting: Genetic identification of nicotine-degrading bacteria and kinetic analysis of transformations in leachate. Chemical Papers, 12: 1103-1110. Doi: https://doi.org/10.2478/s11696-012-0234-3

Bustamante, M. A.; Moral, R.; Bonmatí, A.; Palatsí, J.; Solé-Mauri, F.; Bernal, M. P. 2014. Integrated Waste Management Combining Anaerobic and Aerobic Treatment. A Case Study. Waste and Biomass Valorization, 5: 481-490. Doi: https://doi.org/10.1007/s12649-013-9260-9

Campos, S. X. de.; Resseti, R. R.; Zittel, R. 2014. Monitoring and characterization of compost obtained from household waste and pine sawdust in a facultative reactor by conventional and spectroscopic analyses. Waste Management & Research, 32: 1186-1191. Doi: https://doi.org/10.1177/0734242X14543817

Cosic, I.; Vukovic, M.; Gomzi, Z.; Briški, F. 2013. Modelling of kinetics of microbial degradation of simulated leachate from tobacco dust waste. Chemical Papers, 67: 1138-1145. Doi: https://doi.org/10.2478/s11696-012-0287-3

Costa, M. S. S. de M.; Bernardi, F. H.; Costa, L. A. de M.; Pereira, D. C.; Lorin, H. E. F.; Rozatti, M. A. T.; Carneiro, L. J. 2017. Composting as a cleaner strategy to broiler agro-industrial wastes: Selecting carbon source to optimize the process and improve the quality of the final compost. Journal of Cleaner Production, 142: 2084-2092. Doi: https://doi.org/10.1016/j.jclepro.2016.11.075

Du, J.; Zhang, Y.; Qu, M.; Yin, Y.; Fan, K.; Hu, B.; Zhang, H.; Wei, M.; Ma, C. 2019. Effects of biochar on the microbial activity and community structure during sewage sludge composting. Bioresource Technology, 272: 171-179. Doi: https://doi.org/10.1016/j.biortech.2018.10.020

Fialho, L. L., da Silva, W. T. L., Milori, D. M. B. P., Simões, M. L., Martin-Neto, L. 2010. Characterization of organic matter from composting of different residues by physicochemical and spectroscopic methods. Bioresource Technology, 101: 1927–1934. Doi: https://doi.org/10.1016/j.biortech.2009.10.039

Godlewska, P.; Schmidt, H. P.; Ok, Y. S.; Oleszczuk, P. 2017. Biochar for composting improvement and contaminants reduction. A review. Bioresource Technology, 246: 193-202. Doi: https://doi.org/10.1016/j.biortech.2017.07.095

Haug, R. T. 1993. The Practical Handbook of Compost Engineering. 1 ed. Lewis Publishers, Boca Raton, Florida, USA. Disponível em: http://93.174.95.29/main/7F1C9A9343CD1D7C1AEEEC113B0D6E02

Heidarzadeh, M.; Amani, H.; Javadian, B. 2019. Improving municipal solid waste compost process by cycle time reduction through inoculation of Aspergillus niger. Journal of Environmental Health Science and Engineering, 17: 295-303. Doi: https://doi.org/10.1007/s40201-019-00348-z

Hemati, A.; Aliasgharzad, N.; Khakvar, R. 2018. In vitro evaluation of lignocellulolytic activity of thermophilic bacteria isolated from different composts and soils of Iran. Biocatálise e Biotecnologia Agrícola, 14: 424-430. Doi: https://doi.org/10.1016/j.bcab.2018.04.010

Jiang, Y.; Ju, M.; Li, W.; Ren, Q.; Liu, L.; Chen, Y.; Yang, Q.; Hou, Q.; Liu, Y. 2015. Rapid production of organic fertilizer by dynamic high-temperature aerobic fermentation (DHAF) of food waste. Bioresource Technology, 197: 7-14. Doi: https://doi.org/10.1016/j.biortech.2015.08.053

Jurado, M. M.; Suárez-Estrella, F.; Vargas-García, M. C.; López, M. J.; López-González, J. A.; Moreno, J. 2014. Evolution of enzymatic activities and carbon fractions throughout composting of plant waste. Journal of Environmental Management, 133: 355-364. Doi: https://doi.org/10.1016/j.jenvman.2013.12.020

Kato, K., Miura, N. 2008. Effect of matured compost as a bulking and inoculating agent on the microbial community and maturity of cattle manure compost. Bioresource Technology, 99: 3372-3380. Doi: https://doi.org/10.1016/j.biortech.2007.08.019

Karnchanawong, S., Nissaikla, S. 2014. Effects of microbial inoculation on composting of household organic waste using passive aeration bin. International Journal of Recycling of Organic Waste in Agriculture, 3: 113–119. Doi: https://doi.org/10.1007/s40093-014-0072-0

Karnchanawong, S., Mongkontep, T., Praphunsri, K. 2017. Effect of green waste pretreatment by sodium hydroxide and biomass fly ash on composting process. Journal of Cleaner Production, 146: 14-19. Doi: https://doi.org?10.1016/j.jclepro.2016.07.126

Kasinski, S.; Wojnowska-Baryla, I. 2014. Oxygen demand for the stabilization of the organic fraction of municipal solid waste in passively aerated bioreactors. Waste Management, 34: 316-322. Doi: https://doi.org/10.1016/j.wasman.2013.10.037

Krusir, G.; Shpyrko, T.; Sagdeeva, O.; Zakharchuk, V. 2019. He role of soil microbiocenosis in the composting of the organic component of the municipal solid waste. Food science and technology, 13: 34-43. Doi: https://doi.org/10.15673/fst.v13i2.1387

Külcü, R.; Yaldiz, O. 2014. The composting of Agricultural wastes and new parameter for the assessment of the process. Ecological Engineering, 60: 220-225. Doi: https://doi.org/10.1016/j.ecoleng.2014.03.097

Kuryntseva, P.; Galitskaya, P.; Selivanovskaya, S. 2016. Changes in the ecological properties of organic wastes during their biological treatment. Waste Management, 58: 90-97. Doi: https://doi.org/10.1016/j.wasman.2016.09.031

Lashermes, G.; Barriuso, E.; Le Villio-Poitrenaud, M.; Houot, S. 2012. Composting in small laboratory pilots: Performance and reproducibility. Waste Management, 32: 271-277. Doi: https://doi.org/10.1016/j.wasman.2011.09.011

Li, S.; Li, J.; Yuan, J.; Li, G.; Zang, B.; Li, Y. 2017. The influences of inoculants from municipal sludge and solid waste on compost stability, maturity and enzyme activities during chicken manure composting. Environmental Technology, 38: 1770-1778. Doi: https://doi.org/10.1080/09593330.2017.1291755

Liu, L.; Wang, S.; Guo, X.; Zhao, T.; Zhang, B. 2018. Succession and diversity of microorganisms and their association with physicochemical properties during green waste thermophilic composting. Waste Management, 73: 101-112. Doi: https://doi.org/10.1016/j.wasman.2017.12.026

Liu, N.; Zhou, J.; Han, L.; Ma, S.; Sun, X.; Huang, G. 2017. Role and multi-scale characterization of bamboo biochar during poultry manure aerobic composting. Bioresource Technology, 241: 190-199. Doi: https://doi.org/10.1016/j.biortech.2017.03.144

Liu, H.; Wang, L.; Lei, M. 2019. Positive impact of biochar amendment on thermal balance during swine manure composting at relatively low ambient temperature. Bioresource Technology, 273: 25-33. Doi: https://doi.org/10.1016/j.biortech.2018.10.033

Maji, D.; Singh, M.; Wasnik, K.; Chanotiya, C.; Kalra, A. 2015. The role of a novel fungal strain Trichoderma atroviride RVF3 in improving humic acid content in mature compost and vermicompost via ligninolytic and celluloxylanolytic activities. Journal of Applied Microbiology, 119: 1584-1596. Doi: https://doi.org/10.1111/jam.12954

Malakahmad, A., Idrus, N. B., Abualqumboz, M. S., Yavari, S., Kutty, S. R. M. 2017. Invessel co-composting of yard waste and food waste: an approach for sustainable waste management in Cameron Highlands, Malaysia. Int. J. Recycl. Organic Waste Agriculture, 6: 149–157. Doi: https://doi.org/10.1007/s40093-017-0163-9

Marco, É. G. D.; Heck, K.; Martos, E. T.; Van Der Sand, S. T. 2017. Purification and characterization of a thermostable alkaline cellulase produced by Bacillus licheniformis 380 isolated from compost. Anais da Academia Brasileira de Ciências, 89: 2359-2370. Doi: http://dx.doi.org/10.1590/0001-3765201720170408

Marmiroli, M.; Bonas, U.; Imperiale, D.; Lencioni, G.; Mussi, F.; Marmiroli, N.; Maestri, E. 2018. Structural and Functional Features of Chars From Different Biomasses as Potential Plant Amendments. Frontiers in Plant Science, 9. Doi: https://doi.org/10.3389/fpls.2018.01119

Mat Saad, N. F.; Nadrah Ma’Min, N.; Md Zain, S.; Ahmad Basri, N. E.; Md Zaini, N. S. 2013. Composting of mixed yard and food wastes with effective microbes. Jurnal Teknologi. Jurnal Teknologi, 65: 89-95. Doi: https://doi.org/10.11113/jt.v65.2196

Mehta, C. M.; Palni, U.; Franke-Whittle, I. H.; Sharma, A. K. 2014. Compost: its role, mechanism and impact on reducing soil-borne plant diseases. Waste Management, 34: 607-622, 2014. Doi: https://doi.org/10.1016/j.wasman.2013.11.012

Ministério da Agricultura, Pecuária e Abastecimento - Secretaria de Defesa Agropecuária - Instrução normativa nº 25, de 23 de julho de 2009. Disponível em: http://sistemasweb.agricultura.gov.br/sislegis/action/detalhaAto.do?method=recuperarTextoAtoTematicaPortal&codigoTematica=1229186

Ministério do Meio Ambiente - Conselho Nacional do Meio Ambiente (CONAMA) - Resolução nº 481, de 03 de outubro de 2017. Disponível em: http://www2.mma.gov.br/port/conama/legiabre.cfm?codlegi=728

Nakasaki, K.; Uehara, N.; Kataoka, M.; Kubota, H. 1996. The Use of Bacillus Licheniformis HA1 To Accelerate Composting of Organic Wastes. Compost Science & Utilization, 4: 47-51. Doi: http://dx.doi.org/10.1080/1065657X.1996.10701852

Nakasaki, K.; Araya, S.; Mimoto, H. 2013. Inoculation of Pichia kudriavzevii RB1 degrades the organic acids present in raw compost material and accelerates composting. Bioresource Technology, 144: 521-528. Doi: https://doi.org/10.1016/j.biortech.2013.07.005

Nakasaki, K.; Hirai, H. 2017. Temperature control strategy to enhance the activity of yeast inoculated into compost raw material for accelerated composting. Waste Management, 65: 29-36. Doi: https://doi.org/10.1016/j.wasman.2017.04.019

Onwosi, C. O.; Igbokwe, V. C.; Odimba, J. N.; Eke, I. E.; Nwankwoala, M. O.; Iroh, I. N.; Ezeogu, L. I. 2017. Composting technology in waste stabilization: On the methods, challenges and future prospects. Journal of Environmental Management, 190: 140-157. Doi: https://doi.org/10.1016/j.jenvman.2016.12.051

Pan, I.; Dam, B.; Sen, S. K. 2012. Composting of common organic wastes using microbial inoculantes. 3 Biotech, 2: 127-134. Doi: https://doi.org/10.1007/s13205-011-0033-5

Piotrowska-Cyplik, A.; Chrzanowski, L.; Cyplik, P.; Dach, J.; Olejnik, A.; Staninska, J.; Czarny, J.; Lewicki, A.; Marecik, R.; Powierska-Czarny, J. 2013. Composting of oiled bleaching earth: fatty acids degradation, phytotoxicity and mutagenicity changues. International Biodeterioration & biodegradation, 78: 49-57. Doi: https://10.1016/j.ibiod.2012.12.007

Rashad, F. M.; Saleh, W. D.; Moselhy, M. A. 2010. Bioconversion of rice straw and certain agro-industrial wastes to amendments of organic farming systems: 1.Composting, quality, stability and maturity indices. Bioresource Technology, 101: 5952-5960. Doi: https://doi.org/10.1016/j.biortech.2010.02.103

Reyes-Torres, M.; Oviedo-Ocaña, E.R.; Dominguez, I.; Komilis, D.; Sánchez, A. 2018. A systematic review on the composting of green waste: Feedstock quality and optimization strategies. Waste Management, 77: 486-499. Doi: https://doi.org/10.1016/j.wasman.2018.04.037

Saffari, H.; Pourbabaee, A. A.; Asgharzadeh, A.; Besharati, H. 2017. Isolation and identification of effective cellulolytic bacteria in composting process from different sources. Archives of Agronomy and Soil Science, 63: 297-307. Doi: https://doi.org/10.1080/03650340.2016.1198006

Saini, J. K.; Patel, A. K.; Adsul, M.; Singhania, R. R. 2016. Cellulase adsorption on lignin: A roadblock for economic hydrolysis of biomass. Renewable Energy, 98: 29-42. Doi: https://doi.org/10.1016/j.renene.2016.03.089

Sanchez-Monedero, M. A.; Cayuela, M. L.; Roig, A.; Jindo, K.; Mondini, C.; Bolan, N. 2018. Role of biochar as an additive in organic waste composting. Bioresource Technology, 247: 1155-1164. Doi: https://doi.org/10.1016/j.biortech.2017.09.193

Sharma, A.; Sharma, R.; Arora, A.; Shah, R.; Singh, A.; Pranaw, K.; Nain, L. 2014. Insights into rapid composting of paddy straw augmented with efficient microorganism consortium. International Journal of Recycling of Organic Waste in Agriculture, 3. Doi: https://doi.org/10.1007/s40093-014-0054-2

Song, C.; Li, M.; Qi, H.; Zhang, Y.; Liu, D.; Xia, X.; Pan, H.; Xi, B. 2018a. Impact of anti-acidification microbial consortium on carbohydrate metabolism of key microbes during food waste composting. Bioresource Technology, 259: 1-9. Doi: https://doi.org/10.1016/j.biortech.2018.03.022

Song, C.; Zhang, Y.; Xia, X.; Qi, H.; Li, M.; Pan, H.; Xi, B. 2018b. Effect of inoculation with a microbial consortium that degrades organic acids on the composting efficiency of food waste. Microbial Biotechnology, 11: 1124-1136. Doi: https://doi.org/10.1111/1751-7915.13294

Sundberg, C., Jönsson, H. 2008. Higher pH and faster decomposition in biowaste composting by increased aeration. Waste Management, 28: 518–526. Doi: https://doi.org/10.1016/j.wasman.2007.01.011

Sundberg, C.; Navia, R. 2014. Is there still a role for composting? Waste Management & Research, 32: 459–460. Doi: https://doi.org/10.1177/0734242X14536094

Tandy, S.; Healey, J. R.; Nason, M. A.; Williamson, J. C.; Jones, D. L. 2009. Heavy metal fractionation during the co-composting biosolids deinking paper fibre and green waste. Bioresource Technology, 100: 4220-4226. Doi: https://doi.org/10.1016/j.biortech.2009.02.046

Tran, Q. N. M.; Mimoto, H.; Nakasaki, K. 2015. Inoculation of lactic acid bacterium accelerates organic matter degradation during composting. International Biodeterioration & Biodegradation, 104: 377-383. Doi: https://doi.org/10.1016/j.ibiod.2015.07.007

Tuomela, M.; Vikman, M.; Hatakka, A.; Itävaara, M. 2000. Biodegradation of lignin in a compost environment: a review. Bioresource Technology, 72: 169–183. Doi: https://doi.org/10.1016/S0960-8524(99)00104-2

Vandecasteele, B.; Sinicco, T.; D'Hose, T.; Vanden Nest, T.; Mondini, C. 2016. Biochar amendment before or after composting affects compost quality and N losses, but not P plant uptake. Journal of Environmental Management, 168: 200-209. Doi: https://doi.org/10.1016/j.jenvman.2015.11.045

Voběrková, S.; Vaverková, M. D.; Burešová, A.; Adamcová, D.; Vršanská, M.; Kynický, J.; Brtnický, M.; Adam, V. 2017. Effect of inoculation with white-rot fungi and fungal consortium on the composting efficiency of municipal solid waste. Waste Management, 61: 157-164. Doi: https://doi.org/10.1016/j.wasman.2016.12.039

Wang, H. B.; Han, L. R.; Feng, J. T.; Zhang, X. 2015. Evaluation of microbially enhanced composting of sophora flavescens residues. Journal of Environmental Science and Health, Part B, 51: 63–70. Doi: http://dx.doi.org/10.1080/03601234.2015.1080503

Wang, H.; Chou, C.; Chiou, C.; Tian, G.; Chiu, C. 2016. Humic Acid Composition and Characteristics of Soil Organic Matter in Relation to the Elevation Gradient of Moso Bamboo Plantations. Plos One, September 1. Doi: https://doi.org/10.1371/journal.pone.0162193

Wang, M.; Awasthi, M. K.; Wang, Q.; Chen, H.; Ren, X.; Zhao, J.; Li, R.; Zhang, Z. 2017. Comparison of additives amendment for mitigation of greenhouse gases and ammonia emission during sewage sludge co-composting based on correlation analysis. Bioresource Technology, 243: 520-527. Doi: https://doi.org/10.1016/j.biortech.2017.06.158

Waqas, M.; Nizami, A. S.; Aburiazaiza, A. S.; Barakat, M. A.; Ismail, I. M. I.; Rashid, M. I. 2018. Optimization of food waste compost with the use of biochar. Journal of Environmental Management, 216: 70-81. Doi: https://doi.org/10.1016/j.jenvman.2017.06.015

Waqas, M.; Nizami, A. S.; Aburiazaiza, A. S.; Barakat, M. A.; Asam, Z. Z.; Khattak, B.; Rashid, M. I. 2019. Untapped potential of zeolites in optimization of food waste composting. Journal of Environmental Management, 241: 99-112. Doi: https://doi.org/10.1016/j.jenvman.2019.04.014

Wei, Y.; Wu, D.; Wei, D.; Zhao, Y.; Wu, J.; Xie, X.; Zhang, R.; Wei, Z. 2019. Improved lignocellulose-degrading performance during straw composting from diverse sources with actinomycetes inoculation by regulating the key enzyme activities. Bioresource Technology, 271: 66-74. Doi: https://doi.org/10.1016/j.biortech.2018.09.081

Xi, B.-D.; He, X.-S.; Wei, Z.-M.; Jiang, Y.-H.; Li, M.-X.; Li, D.; Li, Y.; Dang, Q.-L. 2012. Effect of inoculation methods on the composting efficiency of municipal solid wastes. Chemosphere, 88: 744-750. Doi: https://doi.org/10.1016/j.chemosphere.2012.04.032

Xie, K.; Jia, X.; Xu, P.; Huang, X.; Gu, W.; Zhang, F.; Yang, S.; Tang, S. 2012. The addition of modified attapulgite reduces the emission of nitrous oxide and ammonia from aerobically composted chicken manure. Journal of the Air & Waste Management Association, 62: 1174-118. Doi: http://dx.doi.org/10.1080/10962247.2012.699442

Yang, L.; Jie, G.; She-Qi, Z.; Long-Xiang, S.; Wei, S.; Xun, Q.; Man-Li, D.; Ya-Nan, Y.; Xiao-Juan, W. 2018. Effects of Adding Compound Microbial Inoculum on Microbial Community Diversity and Enzymatic Activity During Co-Composting. Environmental Engineering Science, 35: 27-278. Doi: https://doi.org/10.1089/ees.2016.0423

Yeoh, C. Y.; Chin, N. L.; Tan, C. S.; Ooi, H. S. 2011. Acceleration Effects of Microbial Inoculum on Palm Oil Mill Organic Waste Composting. Compost Science & Utilization, 19: 135-142. Doi: http://dx.doi.org/10.1080/1065657X.2011.10736989

Yu, K.; Li, S.; Sun, X.; Cai, L.; Zhang, P.; Kang, Y.; Yu, Z.; Tong, J.; Wang, L. 2019. Application of seasonal freeze-thaw to pretreat raw material for accelerating green waste composting. Journal of Environmental Management, 239: 96-102. Doi: https://doi.org/10.1016/j.jenvman.2019.02.128

Zhang, L., Sun, X. 2014. Effects of rhamnolipid and initial compost particle size on the two-stage composting of green waste. Bioresource Technology, 163: 112–122. Doi: https://doi.org/10.1016/j.biortech.2014.04.041

Zhang, J.; Lü, F.; Shao, L.; He, P. 2014. The use of biochar-amended composting to improve the humification and degradation of sewage sludge. Bioresource Technology, 168: 252-258. Doi: https://doi.org/10.1016/j.biortech.2014.02.080

Zhang, C.; Liu, L.; Zhao, M.; Rong, H.; Xu, Y. 2018. The environmental characteristics and applications of biochar. Environmental Science and Pollution Research, 25: 21525-21534. Doi: https://doi.org/10.1007/s11356-018-2521-1

Zhao, Y.; Lu, Q.; Wei, Y.; Cui, H.; Zhang, X.; Wang, X.; Shan, S.; Wei, Z. 2016. Effect of actinobacteria agent inoculation methods on cellulose degradation during composting based on redundancy analysis. Bioresource Technology, 219: 196-203. Doi: https://doi.org/10.1016/j.biortech.2016.07.117

Zhao, Y.; Zhao, Y.; Zhang, Z.; Wei, Y.; Wang, H.; Lu, Q.; Li, Y.; Wei, Z. 2017. Effect of thermo-tolerant actinomycetes inoculation on cellulose degradation and the formation of humic substances during composting. Waste Management, 68: 64-73. Doi: https://doi.org/10.1016/j.wasman.2017.06.022

Zhou, H.-B.; Ma, C.; Gao, D.; Chen, T.-B.; Zheng, G.-D.; Chen, J.; Pan, T.-H. 2014. Application of a recyclable plastic bulking agent for sewage sludge composting. Bioresource Technology, 152: 329–336. Doi: https://doi.org/10.1016/j.biortech.2013.10.061

Zhou, G.; Xu, X.; Qiu, X.; Zhang, J. 2019. Biochar influences the succession of microbial communities and the metabolic functions during rice straw composting with pig manure. Bioresource Technology, 272: 10-18. Doi: https://doi.org/10.1016/j.biortech.2018.09.135

Zittel, R.; Silva, C. P.; Domingues, C. E.; Stremel, T. R. O.; Almeida, T. E.; Damiani, G. V.; Campos, S. X. 2018. Treatment of smuggled cigarette tobacco by composting process in facultative reactors. Waste Management, 71: 115–121. Doi: https://doi.org/10.1016/j.wasman.2017.10.023

Publicado
2020-07-31
Como Citar
Ressetti, R. R., & Campos, S. X. (2020). Aceleração do Processo de Compostagem. Caderno De Ciências Agrárias, 12, 1-12. https://doi.org/10.35699/2447-6218.2020.20286
Seção
REVISÕES DE LITERATURA