Metacognição e Ensino de Física: Revisão de Pesquisas Associadas a Intervenções Didáticas

Autores

DOI:

https://doi.org/10.28976/1984-2686rbpec2018182581

Palavras-chave:

ensino de Física, intervenções didáticas, metacognição, revisão de estudos.

Resumo

O estudo apoia-se no entendimento de que a metacognição é favorecedora da aprendizagem, na medida em que possibilita aos alunos regular e controlar seu pensamento. Entretanto, nem todos os sujeitos conseguem evocá-la espontaneamente, necessitando de situações explícitas para isso. No contexto escolar, essa explicitação tem exigido uma reorganização didática que tem discutido modos de agregá-la aos conteúdos curriculares. Diante do exposto, busca-se realizar uma revisão em pesquisas que descrevem intervenções didáticas em Física guiadas pela metacognição, de modo a identificar como essa associação tem sido tratada na literatura e quais as contribuições e tendências para sua inserção em sala de aula. De forma específica, pretende-se: descrever aspectos gerais envolvidos nessas pesquisas; identificar como se processam as práticas no ambiente escolar; examinar o modo como o conceito de metacognição se manifesta nos estudos e quais as aproximações teóricas presentes; e esclarecer alguns dos delineamentos metodológicos utilizados nas pesquisas. A seleção dos estudos ocorreu a partir da base de dados ERIC e identificou um universo de 16 pesquisas. Como resultado, dentre outros aspectos, destacam-se o crescimento e a disseminação dos estudos, a concentração de pesquisas envolvendo a resolução de problemas, a diversidade de aproximações teóricas associadas à metacognição e a ênfase dada ao emprego de questionários como forma de avaliar as intervenções para o aumento do uso do pensamento metacognitivo pelos alunos. Além disso, os estudos analisados revelam a necessidade de mais pesquisas que tratem da intencionalidade de investigar as contribuições dessas intervenções para a aprendizagem dos conhecimentos em Física.

Downloads

Não há dados estatísticos.

Biografia do Autor

Cleci Teresinha Werner da Rosa, Universidade de Passo Fundo - RS

Doutora em Educação Científica e Tecnológica 

Programa de Pós-Graduação em Ensino de Ciências e Matemática

Programa de Pós-Graduação em Educação

Curso de Física - L

Jesús Ángel Meneses Villagrá, Universidad de Burgos

Doctor en Ciencias de la Educación

Programa Internacional de Doctorado de Educacion - Enseñanza de las Ciencias

Departamento de Didácticas Especificas

Referências

Anderson, D., & Nashon, S. (2007). Predators of knowledge construction: Interpreting students’ metacognition in an amusement park physics program. Science Education, 91(2), 298–320. https://doi.org/10.1002/sce.20176
Avargil, S., Lavi, R., & Dori, Y. J. (2018). Students’ metacognition and metacognitive strategies in science education. In Y. J. Dori, Z. R. Mevarech, & D. R. Baker (Orgs) Cognition, Metacognition, and Culture in STEM Education (pp. 33–64). Dordrecht, The Netherlands: Springer-Verlag.
Bransford, J., Sherwood, R., Vye, N., & Rieser, J. (1986). Teaching thinking and problem solving: Research foundations. American psychologist, 41(10), 1078–1089.
Biggs, J. B. (1988). The role of metacognition in enhancing learning. Australian Journal of Education, 32(2), 127–138. https://doi.org/10.1177/000494418803200201
Bogdan, R. C., & Biklen, S. K. (1994). Investigação qualitativa em educação: uma introdução à teoria e aos métodos. Porto: Porto Editora.
Brown, A. L. (1978). Knowing when, where, and how to remember: a problem of metacognition. In R. Glaser (Org.), Advances in instructional psychology (pp. 77–165). NJ: LEA.
Carvalho, R. C., & Rezende, I. O. (2009). Tendências da pesquisa na área de educação em Ciências: uma análise preliminar da publicação da ABRAPEC. In Atas do VII Encontro Nacional de Pesquisas em Educação em Ciências (pp. 1–8). Florianópolis, SC.
Chang, S. H., Chen, M. L., Kuo, Y. K., & Shen, Y. C. (2011). A Simulation-Based LED Design Project in Photonics Instruction Based on Industry–University Collaboration. IEEE Transactions on Education, 54(4), 582–589.
Chi, M. T., Glaser, R., & Rees, E. (1982). Expertise in problem solving. In R. J. Sternberg (Org.). Advances in the psychology of human intelligence. v. 1 (pp. 7–75). N.J.: Erlbaum.
Coleoni, E., & Buteler, L. (2009). Students thinking during physics problem solving: identifying the resources with which they learn. Journal of Science Education, 10(1), 10–14.
Dunning, D., Johnson, K., Ehrlinger, J., & Kruger, J. (2003). Why people fail to recognize their own incompetence. Current Directions in Psychological Science, 12(3), 83–87.
Efklides, A. (2006). Metacognition and affect: What can metacognitive experiences tell us about the learning process? Educational Research Review, 1(1), 3–14. https://doi.org/10.1016/j.edurev.2005.11.001
Fadel, C., Biliak, M., & Trilling, B. (2016). Educação em quatro dimensões: as competências que os estudantes precisam ter para atingir sucesso. Tradução Lilian Bacich. São Paulo: Instituto Ayrton Senna.
Fávero, M. H., & Sousa, C. M. S. G. (2001). A resolução de problemas em Física: revisão de pesquisa, análise e proposta metodológica. Investigações em Ensino de Ciências, 6(2), 143–196.
Flavell, J. H. (1971). First discussant´s comments: what is memory development the development of? Human Development, 14(4), 272–278. https://doi.org/10.1159/000271221
Flavell, J. H. (1976). Metacognitive aspects of problem solving. In L. B. Resnick (Ed.). The nature of intelligence (pp. 231–236). NJ: LEA.
Flavell, J. H. (1979). Metacognition and cognitive monitoring. American Psychologist, 34(10), 906–911. http://dx.doi.org/10.1037/0003-066X.34.10.906
Flavell, J. H, & Wellman, H. (1977). Metamemory. In R. V. Kail, & J. W. Hagen (Eds), Perspectives on the development of memory and cognition (pp. 3–33). Mahwah, NJ: LEA.
Flavell, J. H., Miller, P. H., & Miller, S. A. (1999). Desenvolvimento cognitivo. Tradução de Cláudia Dornelles. 3. ed. Porto Alegre: Artes Médicas Sul.
Gatti, B. (2004). Estudos quantitativos em educação. Educação e Pesquisa, 30(1), 11–30.
Georghiades, P. (2004). From the general to the situated: Three decades of metacognition. Research report. International Journal of Science Education, 26(3), 365–383. https://doi.org/10.1080/0950069032000119401
Greca, I. M. (2000). Discutindo aspectos metodológicos da pesquisa em ensino de ciências: algumas questões para refletir. Revista Brasileira de Pesquisa em Educação em Ciências, 2(1), 73–82.
Hattie, J. (2009). Visible learning: a synthesis of over 800 meta-analyses relating to achievement. NY: Routledge.
Hattie, J. (2012). Visible learning for teachers: maximizing impact on learning. New York: Routledge.
Hennessey, G. (2003). Metacognitive aspects of students’ reflective discourse: Implications for intentional conceptual change teaching and learning. In G. Sinatra & P. Pintrich (Orgs.), Intentional conceptual change (pp. 103–132). Mahwah, NJ: LEA.
Hewson, P. W., Beeth, M. E., & Thorley, N. R. (1998). Teaching for conceptual change. In B. J. Fraser, & K. G. Tobin (Eds.), International handbook of science education (pp. 199–218). Dordrecht, The Netherlands: Kluwer.
Hinojosa, J., & Sanmartí, N. (2016). Promoviendo la autorregulación en la resolución de problemas de física. Ciência & Educação, 22(1), 7–22. http://dx.doi.org/10.1590/1516-731320160010002
Huang, K., Ge, X., & Eseryel, D. (2017). Metaconceptually-enhanced simulation-based inquiry: effects on eighth grade students’ conceptual change and science epistemic beliefs. Educational Technology Research and Development, 65(1), 75–100. https://doi.org/10.1007/s11423-016-9462-5
Johnson, N. (2012). Examining self-regulated learning in relation to certain selected variables. Acta Didactica Napocensia, 5(3), 1–12.
Kalman, C. S., Sobhanzadeh, M., Thompson, R., Ibrahim, A., & Wang, X. (2015). Combination of Interventions Can Change Students’ Epistemological Beliefs. Physical Review Special Topics - Physics Education Research, 11(2), 020136-1-020136-17. https://doi.org/10.1103/PhysRevSTPER.11.020136
Kistner, S., Rakoczy, K., Otto, B., Dignath-van Ewijk, C., Buttner, G., & Klieme, E. (2010). Promotion of self-regulated learning in classrooms: investigating frequency, quality, and consequences for student performance. Metacognition and Learning, 5(2), 157–171. https://doi.org/10.1007/s11409-010-9055-3
Koch, A. (2001). Training in metacognition and comprehension of physics texts. Science Education, 85(6), 758–768. https://doi.org/10.1002/sce.1037
Malone, K. L. (2008). Correlations among knowledge structures, force concept inventory, and problem-solving behaviors. Physical Review Special Topics - Physics Education Research, 4(2), 020107-1-15. https://doi.org/10.1103/PhysRevSTPER.4.020107
Mäntylä, T. (2013). Promoting Conceptual Development in Physics Teacher Education: Cognitive-Historical Reconstruction of Electromagnetic Induction Law. Science & Education, 22(6), 1361–1387. https://doi.org/10.1007/s11191-012-9460-x
McIntyre, D. (2005). Bridging the gap between research and practice. Cambridge Journal of Education, 35(3), 357–382. https://doi.org/10.1080/03057640500319065
Monereo, C. (2001). La enseñanza estratégica: enseñar para la autonomía. In C. Monereo (Org.). Ser estratégico y autónomo aprendiendo (pp. 11–27). Barcelona: Graó.
Moser, S., Zumbach, J., & Deibl, I. (2017). The effect of metacognitive training and prompting on learning success in simulation based physics learning. Science Education, 101(6), 944–967. https://doi.org/10.1002/sce.21295
Muñoz, Á. V. (2017) ¿Qué hay de nuevo en la metacognición? Una revisión del concepto y su aplicación en los procesos de lectura y escritura. Venezuela. Recuperado de https://www.researchgate.net/publication/306079274
Nelson, T., & Narens, L. (1994). Why investigate metacognition. In M. Janet, & A. Shimamura (Org). Metacognition: Knowing about knowing (pp. 1–25). Cambrigde: ABB.
Nielsen, W. S., Nashon, S., & Anderson, D. (2009). Metacognitive engagement during fieldtrip experiences: A case study of students in an amusement park physics program. Journal of Research in Science Teaching, 46(3), 265–288. https://doi.org/10.1002/tea.20266
Noël, B. (1991). La métacognition. Bruxelles: De Boeck Université.
Palincsar, A. S., & Brown, A. L. (1984). Reciprocal teaching of comprehension fostering and comprehension monitoring activities. Cognition and Instruction, 1(2), 117–175. https://doi.org/10.1207/s1532690xci0102_1
Parisoto, M. (2014). Ensino de Termodinâmica a partir de situações da Engenharia: integrando as metodologias de projetos e as unidades de ensino potencialmente significativas. (Tese de Doutorado). Universidade Federal do Rio Grande do Sul, Porto Alegre.
Pintrich, P. R., Wolters, C. A., & Baxter, G. P. (2000). Assessing metacognition and selfregulated learning. In G. Schraw, & J. C. Impara (Orgs.), Issues in the measurement of metacognition (pp. 43–97). Lincoln, NE: Buros Institute of Mental Measurement.
Peters, E. E. (2012). Developing content knowledge in students through explicit teaching of the nature of science: Influences of goal setting and self-monitoring. Science & Education, 21(6), 881–898. https://doi.org/10.1007/s11191-009-9219-1
Pol, H. J., Harskamp, E. G., Suhre, C. J., & Goedhart, M. J. (2009). How indirect supportive digital help during and after solving physics problems can improve problem-solving abilities. Computers & Education, 53(1), 34–50. https://doi.org/10.1016/j.compedu.2008.12.015
Romanowski, J. P., & Ens, R. T. (2006). As pesquisas denominadas do tipo “Estado da Arte”. Revista Diálogo Educacional, 6(19), 37–50.
Rosa, C. T. W. (2011). A metacognição e as atividades experimentais no ensino de Física. (Tese de Doutorado). Universidade Federal de Santa Catarina, Florianópolis.
Ryan, Q. X., Frodermann, E., Heller, K., Hsu, L., & Mason, A. (2016). Computer problem-solving coaches for introductory physics: Design and usability studies. Physical Review Physics Education Research, 12(1), 0101051-17. https://doi.org/10.1103/PhysRevPhysEducRes.12.010105
Schraw, G., & Dennison, R. S. (1994). Assessing metacognitive awareness. Contemporary educational psychology, 19(4), 460–475. https://doi.org/10.1006/ceps.1994.1033
Smith, C., Maclin, D., Houghton, C., & Hennessey, G. (2000). Sixth-grade students’ epistemologies of science: The impact of school science experiences on epistemological development. Cognition and Instruction, 18(3), 349–422. https://doi.org/10.1207/S1532690XCI1803_3
Taasoobshirazi, G., & Farley, J. (2013a). Construct validation of the physics metacognition inventory. International Journal of Science Education, 35(3), 447–459. https://doi.org/10.1080/09500693.2012.750433
Taasoobshirazi, G., & Farley, J. A. (2013b). Multivariate Model of Physics Problem Solving. Learning and Individual Differences, 24, 53–62. https://doi.org/10.1016/j.lindif.2012.05.001
Thomas, G. P. (2003) Conceptualisation, Development and Validation of an Instrument for Investigating the Metacognitive Orientation of Science Classroom Learning Environments: The Metacognitive Orientation Learning Environment Scale – Science (MOLES-S). Learning Environments Research, 6(2), 175–197. https://doi.org/10.1080/09500693.2012.750433
Thomas, G. P. (2013). Changing the metacognitive orientation of a classroom environment to stimulate metacognitive reflection regarding the nature of physics learning. International Journal of Science Education, 35(7), 1183–1207. https://dx.doi.org/10.1080/09500693.2013.778438
Thorley, N. R. (1990). The role of conceptual change model in the interpretation of classroom interactions. (Dissertação Mestrado). Universidade de Wisconsin, Madison.
Veenman, M. V. J. (2005). The assessment of metacognitive skills: What can be learned from multimethod designs? In C. Artelt, & B. Moschner (Orgs.), Lernstrategien und Metakognition: Implikationen für Forschung und Praxis (pp. 75–97). Münster: Waxmann.
Veenman, M. V. J. (2011). Learning to self-monitor and self-regulate. In R. E. Mayer & P. A. Alexander (Orgs.), Handbook of research on learning and instruction (pp. 197–218). NY: Routledge.
Veenman, M. V. J., Kok, R., & Blöte, A. W. (2005). The relation between intellectual and metacognitive skills in early adolescence. Instructional Science, 33(3), 193–211. http://doi.org/10.1007/s11251-004-2274-8
Veenman, M. V. J., van Hout-Wolters, B. H. A. M., & Afflerbach, P. (2006). Metacognition and learning: Conceptual and methodological considerations. Metacognition and Learning, 1(1), 3–14. https://doi.org/10.1007/s11409-006-6893-0
Verpoorten, D., Castaigne, J. L., Westera, W., & Specht, M. (2014). A quest for meta-learning gains in a physics serious game. Education and Information Technologies, 19(2), 361–374. https://doi.org/10.1007/s10639-012-9219-7
Wang, M., Haertel, G., & Walberg, H. (1993). Toward and knowledge base for school learning. Review of Educational Research, 63(3), 249–294. https://doi.org/10.3102/00346543063003249
White, R. T. (1990). Metacognition. In J. Keeves, (Org.). Educational Research, Methodology and Measurement: An international handbook (pp. 70–75). Oxford: Pergamon Press.
White, R. T. (1998). Decisions and problems in research on metacognition. In B. J. Fraser & K. G. Tobin (Orgs.), International Handbook of Science Education (pp. 1207–1213). London: Kluwer.
Yürük, N., Beeth, M. E., & Andersen, C. (2009). Analyzing the effect of metaconceptual teaching practices on students’ understanding of force and motion concepts. Research in Science Education, 39(4), 449–475. https://doi.org/10.1007/s11165-008-9089-6
Zepeda, C. D., Richey, J. E., Ronevich, P., & Nokes-Malach, T. J. (2015). Direct instruction of metacognition benefits adolescent science learning, transfer, and motivation: An in vivo study. Journal of Educational Psychology, 107(4), 954–970. http://dx.doi.org/10.1037/edu0000022
Zimmerman, B. J. (1995). Self-efficacy and educational development. In A. Bandura (Org.), Self-efficacy in changing societies (pp. 202–231). Cambridge: Cambridge University Press.
Zohar, A., & Barzilai, S. (2013). A review of research on metacognition in science education: current and future directions. Studies in Science Education, 49(2), 121–169. https://doi.org/10.1080/03057267.2013.847261

Downloads

Publicado

2018-08-31

Como Citar

Rosa, C. T. W. da, & Meneses Villagrá, J. Ángel. (2018). Metacognição e Ensino de Física: Revisão de Pesquisas Associadas a Intervenções Didáticas. Revista Brasileira De Pesquisa Em Educação Em Ciências, 18(2), 581–608. https://doi.org/10.28976/1984-2686rbpec2018182581

Edição

Seção

Artigos