Explorando a visualização, o pensamento geométrico e a criatividade

uma experiência com licenciandos em Matemática

Autores

DOI:

https://doi.org/10.35699/2237-5864.2025.57403

Palavras-chave:

quadriláteros, visualização, pensamento geométrico, ensino de geometria, formação de professores

Resumo

Ensinar Geometria exige mais do que transmitir definições e propriedades. É necessário estimular a visualização, o raciocínio e a criatividade, e permitir que os estudantes construam significados a partir da investigação de situações práticas. Nesse processo, metodologias que incentivam a exploração e a justificativa de estratégias são fundamentais para fortalecer o pensamento geométrico, especialmente na formação inicial de professores de Matemática. Este estudo relata uma experiência de ensino com acadêmicos do segundo semestre da licenciatura em Matemática e seu objetivo foi desenvolver pensamento geométrico, criatividade e visualização a partir de uma investigação envolvendo quadriláteros. Com abordagem qualitativa, os dados foram obtidos das respostas dos estudantes a três questões práticas realizadas em aula de Fundamentos de Geometria. As atividades propuseram a construção de quadriláteros em malhas pontilhadas de diferentes dimensões (3x3, 3x4 e 4x4), analisando a capacidade de identificar, justificar e explorar configurações distintas. Os resultados indicaram avanços, como a distinção entre figuras convexas e não convexas, mas também revelaram desafios, sobretudo na formulação de justificativas consistentes e na identificação de todas as possibilidades geométricas. Houve dificuldades na aplicação de conceitos como rotação e translação, além de limitações ao ampliar soluções obtidas em malhas menores para maiores. Concluímos que estratégias pedagógicas que enfatizem reforço conceitual, visualização, criatividade e pensamento reflexivo são essenciais para potencializar a aprendizagem geométrica. Acreditamos que tais abordagens podem contribuir para a formação de professores mais preparados para os desafios do ensino de Geometria.

Downloads

Os dados de download ainda não estão disponíveis.

Biografia do Autor

  • Mauricio Ramos Lutz, Instituto Federal de Educação, Ciência e Tecnologia Farroupilha

    Professor do Programa de Pós-Graduação em Educação Profissional e Tecnológica do Instituto Federal Farroupilha (ProfEPT/IFFar). Doutor em Ensino de Ciências e Matemática pela Universidade Franciscana (UFN), mestre em Ensino de Matemática pela Universidade Federal do Rio Grande do Sul (UFRGS). Professor titular do Ensino Básico, Técnico e Tecnológico no IFFar.

  • Gabriel de Oliveira Soares, Instituto Federal de Educação, Ciência e Tecnologia Farroupilha

    Professor do Ensino Básico, Técnico e Tecnológico no Instituto Federal Farroupilha (IFFar). Doutor em Ensino de Ciências e Matemática pela Universidade Franciscana (UFN). Atua no Ensino de Matemática, com pesquisas sobre formação de professores, conhecimento matemático para o ensino, grupos de estudos em Geometria e a teoria dos Três Mundos da Matemática.

  • José Carlos Pinto Leivas, Universidade Franciscana

    Professor e pesquisador do Programa de Pós-Graduação em Ensino de Ciências e Matemática da Universidade Franciscana (UFN).  Doutor em Educação (Matemática) pela Universidade Federal do Paraná́ (UFPR), mestre em Matemática Pura e Aplicada pela Universidade Federal de Santa Catarina (UFSC). Professor no doutorado e mestrado em Ensino de Ciências e Matemática da UFN.

  • Ari Blaz Falcão Ardais, Instituto Federal de Educação, Ciência e Tecnologia Farroupilha

    Professor da Especialização em Gestão Escolar do Instituto Federal Farroupilha (IFFar). Mestre em Educação Matemática pela Universidade Federal de Pelotas (UFPEL). Professor do Ensino Básico, Técnico e Tecnológico no IFFar.

Referências

AMARAL, Nuno; CARREIRA, Susana. A criatividade matemática nas respostas de alunos participantes de uma competição de resolução de problemas. Bolema, Rio Claro, v. 31, n. 59, p. 880-906, dez. 2017. DOI: https://doi.org/10.1590/1980-4415v31n59a02. Disponível em: https://www.scielo.br/j/bolema/a/Y7rPTt3Z8y3tRhWsTw5SP3J/abstract/?lang=pt. Acesso em: 11 nov. 2025.

ARCAVI, Abraham. Symbol sense: informal sense-making in formal mathematics. For the learning of mathematics, Vancouver, v. 14, n. 3, p. 24-35, nov. 1994. Disponível em: https://flm-journal.org/Articles/BFBFB3A8A2A03CF606513A05A22B.pdf. Acesso em: 11 nov. 2025.

ARCAVI, Abraham. The role of visual representations in the learning of mathematics. Educational Studies in Mathematics, Netherlands, v. 52, n. 3, p. 215-241, nov. 2003. DOI: https://doi.org/10.1023/A:1024312321077. Disponível em: https://link.springer.com/article/10.1023/A:1024312321077. Acesso em: 11 nov. 2025.

BOGDAN, Robert C.; BIKLEN, Sari Knopp. Investigação qualitativa em educação: uma introdução à teoria e aos métodos. Porto: Porto Editora, 1994.

BRASIL. Base nacional comum curricular. Brasília: Ministério da Educação, 2018.

DUVAL, Raymond. Sémiosis et pensée humaine: registres sémiotiques et apprentissages intellectuels. Berne: Peter Lang, 1995.

FISCHBEIN, Efraim. The theory of figural concepts. Educational studies in mathematics, Dordrecht, v. 24, n. 2, p. 139-162, fev. 1993. Disponível em: http://www.jstor.org/stable/3482943?origin=JSTOR-pdf. Acesso em: 1 nov. 2025.

FLORES, Cláudia. Olhar, saber, representar: sobre a representação em perspectiva. São Paulo: Musa Editora, 2007.

GONTIJO, Cleyton Hércules; FONSECA, Mateus Gianni. O lugar do pensamento crítico e criativo na formação de professores que ensinam matemática. Revista brasileira de ensino de ciências e matemática, Passo Fundo, v. 3, n. 3, p. 732-747, nov. 2020. DOI: https://doi.org/10.5335/rbecm.v3i3.11834. Disponível em: http://repositorio.unb.br/handle/10482/48125. Acesso em: 11 nov. 2025.

HAMAZAKI, Adriana Clara. O ensino da Geometria sob a ótica dos Van Hiele. In: ENCONTRO NACIONAL DE EDUCAÇÃO MATEMÁTICA, 8. , 2004. Recife. Anais [...] Recife: SBEM, 2004, p. 1-9. Disponível em: https://www.sbembrasil.org.br/files/viii/pdf/07/2PO13912905851.pdf. Acesso em: 11 nov. 2025.

LEIVAS, João Carlos Pinto. Imaginação, intuição e visualização: a riqueza de possibilidades da abordagem geométrica no currículo de cursos de licenciatura de matemática. 2009. 294 f. Tese (Doutorado em Educação) – Setor de Educação, Universidade Federal do Paraná, Curitiba, 2009.

MAIOLI, Marcia. Uma oficina para formação de professores com enfoque em quadriláteros. 2002. 164f. Dissertação (Mestrado em Educação Matemática) – Faculdade de Ciências Exatas e Tecnologia, Pontifícia Universidade Católica de São Paulo, São Paulo, 2002.

MILLINGTON, Jon. Petiscos matemáticos – ideias interessantes para ocupar os momentos de lazer. Lisboa: Editora Replicação, 2008.

NACARATO, Adair Mendes; PASSOS, Carmem Lúcia Branca. A geometria nas séries iniciais: uma análise sob a perspectiva da prática pedagógica e da formação de professores. São Carlos: EdUFSCar, 2003.

PAIS, Luís Carlos. Intuição, experiência e teoria geométrica. Zetetiké, Campinas, v. 4, n. 2, p. 65-74, dez. 1996. Disponível em: https://periodicos.sbu.unicamp.br/ojs/index.php/zetetike/article/view/8646739. Acesso em: 11 nov. 2025.

PIRES, Célia Maria Carolino; CURY, Edda; CAMPOS, Tânia Maria Mendonça. Espaço e forma: a construção de noções geométricas. São Paulo: PROEM, 2000.

PRESMEG, Norma C. Visualization in high school mathematics. For the learning of mathematics, Quebec, v. 6, n. 3, p. 42-46, nov. 1986. Disponível em: https://flm-journal.org/Articles/1917B083BE4534511A32616EED75A8.pdf. Acesso em: 11 nov. 2025.

SANTOS, Cleane Aparecida dos; NACARATO, Adair Mendes. Aprendizagem em geometria na educação básica: a fotografia e a escrita na sala de aula. Belo Horizonte: Autêntica, 2014.

SOARES, Gabriel de Oliveira; CASTRO, Laura Tiemme de; STEFANELLO, Ana Paula; LEIVAS, José Carlos Pinto. O jogo “geometria em ação” na licenciatura em matemática: (re)visitando conceitos geométricos através de gestos. REVASF, Petrolina, v. 11, n. 24, p. 248-275, abr. 2021. Disponível em: https://www.periodicos.univasf.edu.br/index.php/revasf/article/view/1407. Acesso em: 11 nov. 2025.

SOUSA, Alexandre Pereira. A geometria não euclidiana e formação do professor de matemática. 2019. 253f. Tese (Doutorado em Educação em Ciências e Matemática) – Instituto de Educação, Universidade Federal do Mato Grosso, Cuiabá, 2019.

TALL, David. Advanced mathematical thinking. Dordrecht: Kluwer, 1991.

VILLIERS, Michael de. Algumas reflexões sobre a teoria de Van Hiele. Educação matemática pesquisa, São Paulo, v. 12, n. 3, p. 400-431, fev. 2010. Disponível em: https://revistas.pucsp.br/index.php/emp/article/view/5167. Acesso em: 11 nov. 2025.

Downloads

Publicado

17-11-2025

Edição

Seção

Artigos

Como Citar

LUTZ, Mauricio Ramos; SOARES, Gabriel de Oliveira; LEIVAS, José Carlos Pinto; ARDAIS, Ari Blaz Falcão. Explorando a visualização, o pensamento geométrico e a criatividade: uma experiência com licenciandos em Matemática. Revista Docência do Ensino Superior, Belo Horizonte, v. 15, p. 1–19, 2025. DOI: 10.35699/2237-5864.2025.57403. Disponível em: https://periodicos.ufmg.br/index.php/rdes/article/view/57403. Acesso em: 7 dez. 2025.