Um sistema de recomendação de rotas turísticas baseado em filtragem colaborativa
DOI :
https://doi.org/10.1590/1983-3652.2023.41397Mots-clés :
Sistemas de recomendação, Pontos de interesse, Turismo, RotasRésumé
Planejar uma viagem, seja como turista ou a trabalho, pode não ser uma tarefa simples. Comprar passagens, encontrar acomodações disponíveis, selecionar lugares para conhecer, todo esse processo pode ser muito exaustivo considerando a quantidade de plataformas online que oferecem serviços no âmbito turístico e a sobrecarga de informações em buscadores na Web. Sistemas de Recomendação entram nesse contexto, para filtrar as informações e sugerir dados relevantes para o usuário. Este artigo propõe um sistema de recomendação de rotas turísticas, que visa auxiliar um viajante a encontrar pontos turísticos relevantes de acordo com suas preferências e interesses.
Références
ADOMAVICIUS, G.; TUZHILIN, A. Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions. IEEE Transactions on Knowledge and Data Engineering, v. 17, n. 6, p. 734–749, 2005. DOI: 10.1109/TKDE.2005.99.
BARBOSA, Ramon Oliveira. Um sistema de recomendação de rotas turísticas baseado em conteúdo. [S.l.], 2022.
BEDI, Punam et al. MARST: Multi-Agent Recommender System for e-Tourism Using Reputation Based Collaborative Filtering. In: MADAAN, Aastha; KIKUCHI, Shinji; BHALLA, Subhash (Ed.). Databases in Networked Information Systems. Cham: Springer International Publishing, 2014. p. 189–201. ISBN 978-3-319-05693-7. DOI: 10.1007/978-3-319-05693-7_12.
BIN, Chenzhong et al. A personalized POI route recommendation system based on heterogeneous tourism data and sequential pattern mining. Multimedia Tools and Applications, Springer, v. 78, n. 24, p. 35135–35156, 2019. DOI: https://doi.org/10.1007/s11042-019-08096-w.
BORRÀS, Joan; MORENO, Antonio; VALLS, Aida. Intelligent tourism recommender systems: A survey. Expert Systems with Applications, v. 41, n. 16, p. 7370–7389, 2014. ISSN 0957-4174. DOI: http://dx.doi.org/10.1016/j.eswa.2014.06.007. Disponível em: http://www.sciencedirect.com/science/article/pii/S0957417414003431.
BOZO, Jorge et al. Metadata for Recommending Primary and Secondary Level Learning Resources. JUCS - Journal of Universal Computer Science, Journal of Universal Computer Science, v. 22, n. 2, p. 197–227, 2016. ISSN 0948-695X. DOI: 10.3217/jucs-022-02-0197. eprint: https://doi.org/10.3217/jucs-022-02-0197. Disponível em: https://doi.org/10.3217/jucs-022-02-0197.
BREESE, John S.; HECKERMAN, David; KADIE, Carl. Empirical Analysis of Predictive Algorithms for Collaborative Filtering. Morgan Kaufmann Publishers Inc., Madison, Wisconsin, p. 43–52, 1998. DOI: https://dl.acm.org/doi/10.5555/2074094.2074100.
BUHALIS, Dimitrios; O’CONOR, Peter. Information Communication Technology Revolutionizing Tourism. Tourism recreation research, v. 30, 2005. DOI: https://doi.org/10.1080/02508281.2005.11081482.
BURKE, Robin. Hybrid Recommender Systems: Survey and Experiments. User Modeling and User-Adapted Interaction, v. 12, n. 4, p. 331–370, nov. 2002. ISSN 1573-1391. DOI: 10.1023/A:1021240730564. Disponível em: http://dx.doi.org/10.1023/A:1021240730564.
BURKE, Robin. Hybrid Web Recommender Systems. In: BRUSILOVSKY, Peter; KOBSA, Alfred; NEJDL, Wolfgang (Ed.). The Adaptive Web: Methods and Strategies of Web Personalization. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. p. 377–408. ISBN 978-3-540-72079-9. DOI: 10.1007/978-3-540-72079-9_12. Disponível em: http://dx.doi.org/10.1007/978-3-540-72079-9_12.
CAZELLA, Sı́lvio César; NUNES, MASN; REATEGUI, Eliseo. A Ciência da Opinião: Estado da arte em Sistemas de Recomendação. André Ponce de Leon F. de Carvalho; Tomasz Kowaltowski..(Org.). Jornada de Atualização de Informática-JAI, p. 161–216, 2010.
CHOUDHARY, BT; TULASI, B. Recommender system for personalised travel itinerary. International Journal of Electrical and Computer Engineering, v. 9, n. 5, p. 4460–4465, 2019. DOI: http://doi.org/10.11591/ijece.v9i5.pp4460-4465.
DI NOIA, Tommaso; OSTUNI, Vito Claudio. Recommender Systems and Linked Open Data. In: FABER, Wolfgang; PASCHKE, Adrian (Ed.). Reasoning Web. Web Logic Rules: 11th International Summer School 2015, Berlin, Germany, July 31- August 4, 2015, Tutorial Lectures. Cham: Springer International Publishing, 2015. p. 88–113. ISBN 978-3-319-21768-0. DOI: 10.1007/978-3-319-21768-0_4. Disponível em: http://dx.doi.org/10.1007/978-3-319-21768-0_4.
FARARNI, Khalid Al et al. Hybrid recommender system for tourism based on big data and AI: A conceptual framework. Big Data Mining and Analytics, v. 4, n. 1, p. 47–55, 2021. DOI: 10.26599/BDMA.2020.9020015.
HANG, Lei et al. Design and Implementation of an Optimal Travel Route Recommender System on Big Data for Tourists in Jeju. Processes, v. 6, n. 8, 2018. ISSN 2227-9717. DOI: 10.3390/pr6080133. Disponível em: https://www.mdpi.com/2227-9717/6/8/133.
HIDAKA, Masato et al. On-site trip planning support system based on dynamic information on tourism spots. Smart Cities, Multidisciplinary Digital Publishing Institute, v. 3, n. 2, p. 212–231, 2020. DOI: 10.3390/smartcities3020013.
HOOTSUITE, We Are Social. Digital 2021: Global Overview Report. DataReportal–Global Digital Insights, 2021.
KEMP, Simon. Digital 2021: the latest insights into the ‘state of digital. [S.l.: s.n.], 2021. Disponível em: https://wearesocial.com/uk/blog/2021/01/digital-2021-the-latest-insights-into-the-state-of-digital. Acesso em: 30 de Março 2022.
KURASHIMA, Takeshi et al. Travel Route Recommendation Using Geotags in Photo Sharing Sites. In: PROCEEDINGS of the 19th ACM International Conference on Information and Knowledge Management. Toronto, ON, Canada: Association for Computing Machinery, 2010. (CIKM ’10), p. 579–588. ISBN 9781450300995. DOI: 10.1145/1871437.1871513. Disponível em: https://doi.org/10.1145/1871437.1871513.
LOH, Stanley et al. A tourism recommender system based on collaboration and text analysis. Information Technology & Tourism, Cognizant Communication Corporation, v. 6, n. 3, p. 157–165, 2003. DOI: https://doi.org/10.3727/1098305031436980.
LOPS, Pasquale; GEMMIS, Marco de; SEMERARO, Giovanni. Content-based Recommender Systems: State of the Art and Trends. In: RICCI, Francesco et al. (Ed.). Recommender Systems Handbook. Boston, MA: Springer US, 2011. p. 73–105. ISBN 978-0-387-85820-3. DOI: 10.1007/978-0-387-85820-3_3. Disponível em: http://dx.doi.org/10.1007/978-0-387-85820-3_3.
LÜ, Linyuan et al. Recommender systems. Physics reports, Elsevier, v. 519, n. 1, p. 1–49, 2012. DOI: https://doi.org/10.48550/arXiv.1202.112.
MLADENIC, Dunja. Text-Learning and Related Intelligent Agents: A Survey. IEEE Intelligent Systems, IEEE Educational Activities Department, Piscataway, NJ, USA, v. 14, n. 4, p. 44–54, jul. 1999. ISSN 1541-1672. DOI: 10.1109/5254.784084. Disponível em: http://dx.doi.org/10.1109/5254.784084.
MOURA, Humberto et al. Developing a Ubiquitous Tourist Guide. In: PROCEEDINGS of the 19th Brazilian Symposium on Multimedia and the Web. Salvador, Brazil: ACM, 2013. (WebMedia ’13), p. 59–66. ISBN 978-1-4503-2559-2. DOI: 10.1145/2526188.2526215. Disponível em: http://doi.acm.org/10.1145/2526188.2526215.
RAPOSO, Rui et al. A abordagem do e-tourism como um ecossistema de inter-influências composto por rizomas de redes pessoais. Revista Turismo & Desenvolvimento, v. 1, n. 17/18, p. 351–361, jan. 2012. DOI: 10.34624/rtd.v1i17/18.12855. Disponível em: https://proa.ua.pt/index.php/rtd/article/view/12855.
RICCI, Francesco; ROKACH, Lior; SHAPIRA, Bracha. Recommender systems: introduction and challenges. In: RECOMMENDER systems handbook. [S.l.]: Springer, 2015. p. 1–34. DOI: 10.1007/978-1-4899-7637-6_1.
RICCI, Francesco; ROKACH, Lior; SHAPIRA, Bracha; KANTOR, Paul B. Recommender Systems Handbook. 1st. New York, NY, USA: Springer-Verlag New York, Inc., 2010. ISBN 0387858199, 9780387858197. DOI: 10.1007/978-0-387-85820-3_1.
ROCHA FERNANDES, Anita Maria da; FREITAS, Mauricio Pasetto de. Sistema de Recomendações Turı́sticas Utilizando Raciocı́nio Baseado em Casos e Geolocalização. Brazilian Journal of Development, v. 7, n. 4, p. 33752–33780, 2021. DOI: https://doi.org/10.34117/bjdv7n4-027.
SEBASTIA, Laura et al. e-Tourism: a tourist recommendation and planning application. International Journal on Artificial Intelligence Tools, World Scientific, v. 18, n. 05, p. 717–738, 2009. DOI: 10.1142/S0218213009000378.
VOZALIS, M.G.; MARGARITIS, K.G. Applying SVD on item-based filtering. In: 5TH International Conference on Intelligent Systems Design and Applications (ISDA’05). [S.l.: s.n.], 2005. p. 464–469. DOI: 10.1109/ISDA.2005.25.
YUAN, Xiaofeng et al. Singular value decomposition based recommendation using imputed data. Knowledge-Based Systems, v. 163, p. 485–494, 2019. ISSN 0950-7051. DOI: https://doi.org/10.1016/j.knosys.2018.09.011. Disponível em: https://www.sciencedirect.com/science/article/pii/S0950705118304623.
ZHANG, Sheng et al. Using singular value decomposition approximation for collaborative filtering. In: IEEE. SEVENTH IEEE International Conference on E-Commerce Technology (CEC’05). [S.l.: s.n.], 2005. p. 257–264. DOI: 10.1109/ICECT.2005.102.
Téléchargements
Publiée
Numéro
Rubrique
Licence
(c) Copyright Suzanne Loures Santos, Frederico Araújo Durão 2023
Ce travail est disponible sous la licence Creative Commons Attribution 4.0 International .
Il s'agit d'un article en libre accès qui permet une utilisation, une distribution et une reproduction sans restriction sur n'importe quel support tant que l'article original est correctement cité.