Antigens of Corynebacterium pseudotuberculosis with promising potential for caseous lymphadenitis vaccine development: a literature review


  • Eliane Macedo Sobrinho Santos Instituto Federal do Norte de Minas Gerais
  • Hércules Otacílio Santos Instituto Federal do Amazonas - Campus São Gabriel, Amazonas, Brazil
  • Alexsander Rodrigues Cangussu Univeridade Federal do Tocantins – Campus Gurupi, Tocantins, Brazil
  • Kattyanne Souza Costa Research and Development Laboratory of Vallée S.A., Montes Claros, Minas Gerais, Brazil
  • Ivoneth dos Santos Dias Department of Biology, Universidade Estadual de Montes Claros, Minas Gerais, Brazil


Prophylaxis. Goats. Sheep. Immunity.


The caseous lymphadenitis (CL) is an infectious disease of chronic evolution that affects sheep and goats, causing great economic losses in goat and sheep production. CL is caused by Corynebacterium pseudotuberculosis. Diagnosis is based on the isolation and identification of the agent and may be carried out serologically ELISA. Vaccination of the flock can be an important tool in preventing CL. The search for new antigens can generate vaccines that are more effective in disease control. Thus, the purpose of this article is to summarize the state of the art on the main antigens of Corynebacterium pseudotuberculosis with good potential for caseous lymphadenitis vaccine development. Various types of vaccines are commercially available and are based on live attenuated and/or inactivated microorganisms, microorganism extracts and/or recombinant proteins or subunits. In addition to the available forms are in the experimental stage DNA-based vaccines, and those using live recombinant microorganisms. We can realize that several studies have been conducted to find antigens for vaccine formulations that can ensure a good immune response to vaccinated animals. Some studies have reported promising antigens and others have shown that there is a need to search for new antigens for CL vaccine production more efficient. Although several studies have already been made in an attempt to develop an effective vaccine against the CL, there is a vast field to be searched and many antigens can still be discovered and studied to give a CL vaccine that is effective, inexpensive and practical.


Não há dados estatísticos.


ABBAS, A.K., LICHTMAN, A.H., PILLAI, S., 2011. Estratégias para o desenvolvimento de vacinas. . Elsevier Brasil Imunologia Celular e Molecular.
ALVES, F.S.F., OLANDER, H.J., 1998. Uso de uma vacina toxoide no controle da linfadenite caseosa em caprinos. Embrapa Caprinos.
ALVES, F.S.F., SANTIAGO, L.B., PINHEIRO, R.R., 2007. Linfadenite Caseosa: O Estado da Arte. . Sobral: Embrapa Caprinos.
BAIRD, G.J., FONTAINE, M.C., 2007. Corynebacterium pseudotuberculosis and its role in ovine caseous lymphadenitis. Journal of Comparative Pathology 137, 31.
Bastos, B.L., Loureiro, D., Raynal, J.T., Guedes, M.T., Vale, V.L., Moura-Costa, L.F., Guimaraes, J.E., Azevedo, V., Portela, R.W., Meyer, R., 2013. Association between haptoglobin and IgM levels and the clinical progression of caseous lymphadenitis in sheep. BMC veterinary research 9, 254.
Batey, R.G., 1986. Pathogenesis of caseous lymphadenitis in sheep and goats. Australian veterinary journal 63, 269-272.
Billington, S.J., Esmay, P.A., Songer, J.G., Jost, B.H., 2002. Identification and role in virulence of putative iron acquisition genes from Corynebacterium pseudotuberculosis. FEMS microbiology letters 208, 41-45.
Chaplin, P.J., De Rose, R., Boyle, J.S., McWaters, P., Kelly, J., Tennent, J.M., Lew, A.M., Scheerlinck, J.P., 1999. Targeting improves the efficacy of a DNA vaccine against Corynebacterium pseudotuberculosis in sheep. Infection and immunity 67, 6434-6438.
Costa, M.P., McCulloch, J.A., Almeida, S.S., Dorella, F.A., Fonseca, C.T., Oliveira, D.M., Teixeira, M.F., Laskowska, E., Lipinska, B., Meyer, R., Portela, R.W., Oliveira, S.C., Miyoshi, A., Azevedo, V., 2011. Molecular characterization of the Corynebacterium pseudotuberculosis hsp60-hsp10 operon, and evaluation of the immune response and protective efficacy induced by hsp60 DNA vaccination in mice. BMC research notes 4, 243.
Dorella, F.A., Pacheco, L.G., Oliveira, S.C., Miyoshi, A., Azevedo, V., 2006. Corynebacterium pseudotuberculosis: microbiology, biochemical properties, pathogenesis and molecular studies of virulence. Veterinary research 37, 201-218.
Dorella, F.A., Pacheco, L.G., Seyffert, N., Portela, R.W., Meyer, R., Miyoshi, A., Azevedo, V., 2009. Antigens of Corynebacterium pseudotuberculosis and prospects for vaccine development. Expert review of vaccines 8, 205-213.
Garg, N.K., Dwivedi, P., Jain, A., Tyagi, S., Sahu, T., Tyagi, R.K., 2014. Development of novel carrier(s) mediated tuberculosis vaccine: more than a tour de force. European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences 62, 227-242.
Hassan, S.S., Tiwari, S., Guimaraes, L.C., Jamal, S.B., Folador, E., Sharma, N.B., de Castro Soares, S., Almeida, S., Ali, A., Islam, A., Povoa, F.D., de Abreu, V.A., Jain, N., Bhattacharya, A., Juneja, L., Miyoshi, A., Silva, A., Barh, D., Turjanski, A., Azevedo, V., Ferreira, R.S., 2014. Proteome scale comparative modeling for conserved drug and vaccine targets identification in Corynebacterium pseudotuberculosis. BMC genomics 15 Suppl 7, S3.
Hensel, M., Holden, D.W., 1996. Molecular genetic approaches for the study of virulence in both pathogenic bacteria and fungi. Microbiology 142 ( Pt 5), 1049-1058.
Hodgson, A.L., Tachedjian, M., Corner, L.A., Radford, A.J., 1994. Protection of sheep against caseous lymphadenitis by use of a single oral dose of live recombinant Corynebacterium pseudotuberculosis. Infection and immunity 62, 5275-5280.
Menzies, P.I., Muckle, C.A., Brogden, K.A., Robinson, L., 1991. A field trial to evaluate a whole cell vaccine for the prevention of caseous lymphadenitis in sheep and goat flocks. Canadian journal of veterinary research = Revue canadienne de recherche veterinaire 55, 362-366.
Moher, D., Liberati, A., Tetzlaff, J., Altman, D.G., Group, P., 2010. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Int J Surg 8, 336-341.
MOTTA, R.G., CREMASCO, A.D.C.M., RIBEIRO, M.G., 2010. Infecções por Corynebacterium pseudotuberculosis em animais de produção. . Veterinária e Zootecnia 17, 14.
Moura-Costa, L.F., Bahia, R.C., Carminati, R., Vale, V.L., Paule, B.J., Portela, R.W., Freire, S.M., Nascimento, I., Schaer, R., Barreto, L.M., Meyer, R., 2008. Evaluation of the humoral and cellular immune response to different antigens of Corynebacterium pseudotuberculosis in Caninde goats and their potential protection against caseous lymphadenitis. Veterinary immunology and immunopathology 126, 131-141.
NOZAKI, C.N., FARIA, M.A.R., MACHADO, T.M.M., 2000. Extirpação cirúrgica dos abscessos da linfadenite caseosa em caprinos. . Arquivos do Instituto Biológico 67, 3.
OREIBY, A.F., 2015. Diagnosis of caseous lymphadenitis in sheep and goat. . Small Ruminant Research 123, 7.
Pinto, A.C., de Sa, P.H., Ramos, R.T., Barbosa, S., Barbosa, H.P., Ribeiro, A.C., Silva, W.M., Rocha, F.S., Santana, M.P., de Paula Castro, T.L., Miyoshi, A., Schneider, M.P., Silva, A., Azevedo, V., 2014. Differential transcriptional profile of Corynebacterium pseudotuberculosis in response to abiotic stresses. BMC genomics 15, 14.
Radusky, L.G., Hassan, S., Lanzarotti, E., Tiwari, S., Jamal, S., Ali, J., Ali, A., Ferreira, R., Barh, D., Silva, A., Turjanski, A.G., Azevedo, V.A., 2015. An integrated structural proteomics approach along the druggable genome of Corynebacterium pseudotuberculosis species for putative druggable targets. BMC genomics 16 Suppl 5, S9.
Ribeiro, D., Rocha Fde, S., Leite, K.M., Soares Sde, C., Silva, A., Portela, R.W., Meyer, R., Miyoshi, A., Oliveira, S.C., Azevedo, V., Dorella, F.A., 2014. An iron-acquisition-deficient mutant of Corynebacterium pseudotuberculosis efficiently protects mice against challenge. Veterinary research 45, 28.
Santana-Jorge, K.T., Santos, T.M., Tartaglia, N.R., Aguiar, E.L., Souza, R.F., Mariutti, R.B., Eberle, R.J., Arni, R.K., Portela, R.W., Meyer, R., Azevedo, V., 2016. Putative virulence factors of Corynebacterium pseudotuberculosis FRC41: vaccine potential and protein expression. Microbial cell factories 15, 83.
Santos, A.R., Carneiro, A., Gala-Garcia, A., Pinto, A., Barh, D., Barbosa, E., Aburjaile, F., Dorella, F., Rocha, F., Guimaraes, L., Zurita-Turk, M., Ramos, R., Almeida, S., Soares, S., Pereira, U., Abreu, V.C., Silva, A., Miyoshi, A., Azevedo, V., 2012. The Corynebacterium pseudotuberculosis in silico predicted pan-exoproteome. BMC genomics 13 Suppl 5, S6.
Seyffert, N., Guimaraes, A.S., Pacheco, L.G., Portela, R.W., Bastos, B.L., Dorella, F.A., Heinemann, M.B., Lage, A.P., Gouveia, A.M., Meyer, R., Miyoshi, A., Azevedo, V., 2010. High seroprevalence of caseous lymphadenitis in Brazilian goat herds revealed by Corynebacterium pseudotuberculosis secreted proteins-based ELISA. Research in veterinary science 88, 50-55.
Silva, J.W., Droppa-Almeida, D., Borsuk, S., Azevedo, V., Portela, R.W., Miyoshi, A., Rocha, F.S., Dorella, F.A., Vivas, W.L., Padilha, F.F., Hernandez-Macedo, M.L., Lima-Verde, I.B., 2014. Corynebacterium pseudotuberculosis cp09 mutant and cp40 recombinant protein partially protect mice against caseous lymphadenitis. BMC veterinary research 10, 965.
Simmons, C.P., Dunstan, S.J., Tachedjian, M., Krywult, J., Hodgson, A.L., Strugnell, R.A., 1998. Vaccine potential of attenuated mutants of Corynebacterium pseudotuberculosis in sheep. Infection and immunity 66, 474-479.
Simmons, C.P., Hodgson, A.L., Strugnell, R.A., 1997. Attenuation and vaccine potential of aroQ mutants of Corynebacterium pseudotuberculosis. Infection and immunity 65, 3048-3056.
Stanford, K., Brogden, K.A., McClelland, L.A., Kozub, G.C., Audibert, F., 1998. The incidence of caseous lymphadenitis in Alberta sheep and assessment of impact by vaccination with commercial and experimental vaccines. Canadian journal of veterinary research = Revue canadienne de recherche veterinaire 62, 38-43.
Walker, J., Jackson, H.J., Eggleton, D.G., Meeusen, E.N., Wilson, M.J., Brandon, M.R., 1994. Identification of a novel antigen from Corynebacterium pseudotuberculosis that protects sheep against caseous lymphadenitis. Infection and immunity 62, 2562-2567.




Como Citar

Santos, E. M. S., Santos, H. O., Cangussu, A. R., Costa, K. S., & Dias, I. dos S. (2016). Antigens of Corynebacterium pseudotuberculosis with promising potential for caseous lymphadenitis vaccine development: a literature review. Caderno De Ciências Agrárias, 8(2), 90–99. Recuperado de



Share |

Artigos mais lidos pelo mesmo(s) autor(es)